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1. Introduction – Transformer Circuits Thread

4
- Antrophic, Transformer Circuits Thread

• A foundational article for understanding inner workings of transformer architecture.

- Antrophic, A Mathematical Framework for Transformer Circuits

https://transformer-circuits.pub/
https://transformer-circuits.pub/2021/framework/index.html


1. Introduction – What is Circuit?
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• It seems complex at first glance, but knowing each part’s role makes it understandable.



1. Introduction – What is Circuit?
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• This is an attempt to view the Transformer as a circuit and analyze how each component 

affects the logits.

Transformer Transformer Circuit



1. Introduction – Model Simplifications

7

Toy Transformers

• At most two layers (0, 1, 2)

▪ More than two layers will be talked in Week 4 (In-context Learning and Induction Heads) 

• Attention-Only (No MLPs)

▪ The authors emphasized the importance of the MLP layer, but excluded it due to difficulties in 

interpretation.

• Get rid of layer normalization

• No biases

▪ The bias term was omitted, as it can be incorporated by extending the weight with an additional 

dimension.

- Antrophic, In-context Learning and Induction Heads.

https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html


1. Introduction – Reverse Engineering Results
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• Zero layer transformers model bigram statistics.

• One layer attention-only transformers are an ensemble of bigram and “skip-trigram” 

(sequences of the form "A… B C") models.

• Two layer attention-only transformers can implement much more complex algorithms using 

compositions of attention heads.

Reverse Engineering Results



1. Introduction – Reverse Engineering Results
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• Since there is no interaction between tokens, the task becomes a bi-gram problem—predicting the 

most appropriate next token based solely on the current one.

Zero Layer Transformer

• Zero layer transformers model bigram statistics.



1. Introduction – Reverse Engineering Results
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One Layer Transformer

• One layer attention-only transformers are an ensemble of bigram and “skip-trigram” 

(sequences of the form "A… B C") models.

Skip-trigram: [source]... [destination][out]

• A skip-trigram pattern refers to cases where a token (e.g., C) is predicted by attending 

not only to the previous token (B) but also to a distant earlier token (A).



1. Introduction – Reverse Engineering Results
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One Layer Transformer

• One layer attention-only transformers are an ensemble of bigram and “skip-trigram” 

(sequences of the form "A… B C") models.

Skip-trigram: [source]... [destination][out]

• In natural language, long-range dependencies are common — a distant token (A) can influence later 

tokens (B, C).

• A one-layer transformer can predict the next token (C) by:

▪ Referring to the immediately previous token (B → C), like a bigram model

▪ Referring to a distant but relevant token (A → C), similar to a skip-trigram pattern



1. Introduction – Reverse Engineering Results
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Two Layer Transformer

• Two layer attention-only transformers can implement much more complex algorithms using 

compositions of attention heads.

Induction Head Behavior

• Induction heads search for a previous occurrence of the current token, and if found, copy 

the token that followed it.



1. Introduction – Reverse Engineering Results
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Two Layer Transformer

• Two layer attention-only transformers can implement much more complex algorithms using 

compositions of attention heads.



2. Transformer Overview
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2. Transformer Overview – Residual Stream
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• This figure represents author’s perspective on the Transformer architecture.

Transformer (Vaswani et al., 2017) Transformer (Elhage et al., 2021)



2. Transformer Overview – Residual Stream
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• Both the attention and MLP layers each “read” their input from the residual stream.

• And, then “write” their result to the residual stream by adding a linear projection back in.

Transformer (Vaswani et al., 2017) Transformer (Elhage et al., 2021)



2. Transformer Overview – Residual Block
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2. Transformer Overview – Virtual Weights
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• is high-dimensional, (e.g., Llama 8B: 4096, 70B: 28,672) and can be divided into different subspaces.

• allows different components to move information efficiently by operating in distinct or shared 

subspaces.

Residual stream: 



2. Transformer Overview – Virtual Weights
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2. Transformer Overview – Attention Heads are Independent and Additive

20- Jay Alammar, The Illustrated Transformer.

https://jalammar.github.io/illustrated-transformer/
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2. Transformer Overview – Attention Heads are Independent and Additive

- Jay Alammar, The Illustrated Transformer.

https://jalammar.github.io/illustrated-transformer/
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2. Transformer Overview – Attention Heads are Independent and Additive

• Specialized Attention Heads:

▪ Previous Token Heads

▪ Copying Heads

▪ Induction Heads

▪ …

• While the idea that attention heads are independent and additive may seem 

unimportant at first, it provides a powerful lens:

• Transformer behavior emerges from the composition of specialized heads, each 

performing distinct and meaningful roles.



2. Transformer Overview – Tensor Product
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• Tensor Product multiplies per position or across positions.

• Understanding the tensor product is essential for analyzing how Transformers apply 

attention across positions and dimensions.



2. Transformer Overview – Tensor Product
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• A product like Id⊗WId⊗W (with identity on the left) represents multiplying each 

position in our context by a matrix. (per position)



2. Transformer Overview – Tensor Product
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• A product like Id⊗WId ( (with identity on the right) represents multiplying across 

positions.



2. Transformer Overview – Tensor Product
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• A product like Id⊗WId ( (with identity on the right) represents multiplying across 

positions.



2. Transformer Overview – Tensor Product
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• A product like Id⊗WId ( (with identity on the right) represents multiplying across 

positions.



2. Transformer Overview – Tensor Product

28

• Mixed-product property

• Attention Layer



3. Zero-Layer Transformers
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3. Zero-Layer Transformers

Logits

unembed

embed

tokens

x0 = WEt

Logits = WUx0 • Model cannot move information from other token

• 𝑊𝑈𝑊𝐸 : Approximate bigram log-likelihood

• “Direct path”: token embedding flows directly down the 

residual stream to the unembedding

• “Barack” is often followed by “Obama”

Bigram Model = 𝑝(𝑤𝑖|𝑤𝑖−1)

Logits = WUWEt

A B

𝑡

Logit



4. One-Layer Transformers
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4. One-Layer Transformers – Overview
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• Ensemble of a bigram model and several “skip-trigram” models

• Skip-trigram models: (“A…BC”)

• Attend from the present token(“B”) to a previous token (“A”) and copy 

information to next tokens (“C”)

A CB⋯

Attend

Copy



4. One-Layer Transformers – One-Layer
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4. One-Layer Transformers – The Path Expansion Trick
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Zero-layer
Transformer

• Sum of end-to-end path



4. One-Layer Transformers – Query-Key and Output-Value Circuits
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𝐴ℎ ⊗ (𝑊𝑈𝑊𝑂𝑉
ℎ 𝑊𝐸) where 𝐴ℎ = softmax(𝑡𝑇 ∙ 𝑊𝐸

𝑇𝑊𝑄𝐾
ℎ 𝑊𝐸 ∙ 𝑡)

Two [𝐧vocab, 𝐧vocab] matrices

▪ WE
TWQK

h WE (“Query-Key(QK) circuit”) : how much a 

query token “wants” to attend to a key token

▪ WUWOV
h WE (“Output-Value(OV) circuit”) : how a given 

token will affect the output logit if attended to

▪ “Frozen” attention pattern

▪ Logits are a linear function of the tokens



4. One-Layer Transformers – Skip-Trigrams
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Skip-Trigram: [source]… [destination][out]

• Copying / primitive in-context learning

• Other interesting skip-trigrams

• Primarily positional attention heads

• Skip-trigram “Bugs”



4. One-Layer Transformers – Skip-Trigrams: Copying
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• Dedicate an enormous fraction of their capacity to copying

• The OV circuit set things up so that tokens, if attended by the head, 

increase the probability of that token and similiar tokens

A CB⋯

Attend

Copy



4. One-Layer Transformers – Skip-Trigrams: Copying
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• Fixed source token

• Largest QK entries (destination)

• Largest OV entries (out)

LaTex

HTML



4. One-Layer Transformers – Skip-Trigrams: Primitive In-context learning
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• Tokenizers typically merge spaces onto the start of words (“ Ralph”)

• Less common words

• common to map to a single token when a space is in front of them

(“ Ralph” -> [“ Ralph”])

• split when there isn’t a space (“Ralph” -> [“R”, “alph”])

• Can observe attention heads which handle copying for words that split into two tokens 

without a space

• When observing a fragmented token, then attend back to complete tokens with a space and 

then predict the continuation

• Kind of mimicking the induction heads ([A][B]…[A][B])

“ Ralph” “alph”“R”⋯

[ab] [b][a]



4. One-Layer Transformers – Skip-Trigrams: Primitive In-context learning
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4. One-Layer Transformers – Skip-Trigrams: Primitive In-context learning
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• More interesting and powerful algorithm in two-layer transformer



4. One-Layer Transformers – Other interesting skip-trigrams
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4. One-Layer Transformers – Other interesting skip-trigrams
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4. One-Layer Transformers – Other interesting skip-trigrams
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4. One-Layer Transformers – Recap
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Skip-Trigram: [source]… [destination][out]

Zero-layer transformer (Bigram log-likelihood)

One-layer transformer (Skip-Trigram)

• Copying / primitive in-context learning

• Other interesting skip-trigrams

• Primarily positional attention heads

• Skip-trigram “Bugs”

A CB⋯

Attend

Copy



4. One-Layer Transformers – Primarily positional attention heads
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• Attends to the present token or the previous token

• WQK works like the rotational matrix

• Can select for any relative positional offset by rotating the dimensions 

containig sinusoidal information



4. One-Layer Transformers – Skip-trigram “Bugs”
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• Skip-trigram in a “factored form” split between the OV and QK matries

• Representing a function f a, b, c = f1 a, b f2(a, c)

• Can’t capture the three way interaction flexibly

• head increases the probability of both keep … in mind and keep … at bay

• must also increase the probability of keep … in bay and keep … at mind

• An early demontration of using interpretability to understand model failures



4. One-Layer Transformers – Skip-trigram “Bugs”
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• Early demonstration of using interpretability to understand model failures



4. One-Layer Transformers – OV/QK Matrices
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How do we automatically detect copying heads?

• OV and QK matrices are extremely low rank

• 50,000 x 50,000, but rank is 64 or 128

• Reveals hints of much simpler structure

• Like cluster structure

• Copying behavior is widespread

=> Eigendecomposition

Qualitative analysis -> Quantitative analysis



4. One-Layer Transformers – OV Matrices Eigendecomposition
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𝑀𝑣𝑖 = 𝜆𝑖𝑣𝑖

𝑣𝑖 ≔ eigenvector 𝜆𝑖 ≔ eigenvalue

𝑀 = 𝑊𝑈𝑊𝑂𝑉
ℎ 𝑊𝐸

𝑣𝑖 = 𝑎1𝑡1 + 𝑎2𝑡2 +⋯+ 𝑎𝑛𝑡𝑛

• If λi is a postive real number, there’s a linear combination of tokens which increases the linear 

combination of logits of those same tokens

• A set of tokens mutually increase their own probability

• Tokens with Plural words

• Tokens starting with a given first letter

• Eigenvectors have both positive and negative entries => there are two sets of tokens

• Increase probability in the same set

• Decrease probability in those other set
Copying requires 𝛌𝐢 to be positive



4. One-Layer Transformers – OV Matrices Eigendecomposition

52



4. One-Layer Transformers – OV Matrices Eigendecomposition
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4. One-Layer Transformers – OV Matrices Eigendecomposition
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• Author is not fully sure of eigenvalue-based summary statistic

• Positive eigenvalue -> might not mean copying matrix

• Map some token to decreasing the logits of that same token

• “Copying on average”

• Detecting “Copying Matrices” by other ways

• Diagonal of OV matrix: how each token affects its own probability

• Positive-leaning

• Tr M = σi=1
n aii = σi=1

n λi

𝑎11
⋱

𝑎𝑛𝑛



5. Two-Layer Transformers
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Contents of Two-Layer Transformers

1) Recap One-layer Transformer

2) What happens with a Two-layer Transformer

3) Overview of Induction Head

56

4) How Induction heads work

5) Composition

6) Term Importance Analysis

7) Virtual Attention Head



5. Two-Layer Transformers – 1) Recap One-layer Transformers
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Copying!
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b

b a

-> Increase the probability of 
the attended token and similar 
tokens to a lesser extent

-> Attends the token that could 
plausibly be the next token

5. Two-Layer Transformers – 1) Recap One-layer Transformers



5. Two-Layer Transformers – 2) What happens with a Two-layer Transformer
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the attention patterns with attention weights scaled by 𝑣𝑠𝑟𝑐
ℎ

-> how big a vector is moved from each position?
-> See how useful it consider each source token
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5. Two-Layer Transformers – 2) What happens with a Two-layer Transformer



5. Two-Layer Transformers – 3) Overview of Induction head
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What is the difference between copying and induction?

• Copying

• Happens when tokens are plausible in terms of bigram-ish statistics

• Looking for places it might be able to repeat a token 

• Induction

• Looks like an algorithm that doesn't depend on learned statistics about whether one token can 

plausibly follow another

• Integrating the information about the context of the token by considering how the token was 

previously used and looks out for simliar cases



5. Two-Layer Transformers – 3) Overview of Induction head
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Induction head

search previous examples of A` in the context

if not find:

attend to the <START> token

if find:

look at the next token B in previous case

copy the B to predict the next token B`

BA⋯BA

Attend!

Copy!
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5. Two-Layer Transformers – 4) How Induction heads work



5. Two-Layer Transformers – 4) How Induction heads work
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b

b a

b
OV circuit
- Increase the probability of the attended 
token and similar tokens in to a lesser 
extent

QK circuit
- Attends the token that could plausibly 

be the next token
-> Find the same matching and attend to 
the next token of previous use case
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5. Two-Layer Transformers – 4) How Induction heads work
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Induction head

• As the depth increases, composition of attention heads appears

• Residual stream conveys sum of all the outputs of attention heads and the direct path

• Consequently, 𝑊𝑄, 𝑊𝐾 , 𝑊𝑉 of 2nd layer reads in a subspace of this composed residual stream

5. Two-Layer Transformers – 4) How Induction heads work



5. Two-Layer Transformers – 5) Compositions
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Composition

• Q-Composition

• 𝑊𝑄 projects (reads in) a subspace affected by a previous head

• Use the context to figure out what the right source token is

• K-Composition

• 𝑊𝐾 projects (reads in) a subspace affected by a previous head

• Use the context and intelligence to figure out where to get the information from

• V-composition

• 𝑊𝑉 projects (reads in) a subspace affected by a previous head

• Figure out the information that is more meaningful than just the token at that position



5. Two-Layer Transformers – Revisit Read and Write
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Keep in mind that all outputs are summed in the residual stream!

Write (Embed)
• Hidden dimension (small) -> residual dimension (big)
• The model chooses a set of directions in residual stream and write 

the information to those

Read (Project)
• Residual dimension (big) -> hidden dimension (small)
• The model focuses on meaningful directions
• By aligning directions with 𝑊𝐼 , the model only reads in the 

information it really cares about in the sea of information
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5. Two-Layer Transformers – Revisit Read and Write



5. Two-Layer Transformers – 5) Compositions
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Composition

• Q-Composition

• 𝑊𝑄 projects (reads in) a subspace affected by a previous head

• Use the context to figure out what the right source token is

• K-Composition

• 𝑊𝐾 projects (reads in) a subspace affected by a previous head

• Use the context and intelligence to figure out where to get the information from

• V-composition

• 𝑊𝑉 projects (reads in) a subspace affected by a previous head

• Figure out the information that is more meaningful than just the token at that position



5. Two-Layer Transformers – 5) Compositions
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V-composition -
𝑊𝑂𝑉

ℎ2𝑊𝑂𝑉
ℎ1

𝐹

𝑊𝑂𝑉
ℎ2

𝐹
𝑊𝑂𝑉

ℎ1

𝐹

Q-composition -
𝑊𝑄𝐾

ℎ2 𝑇𝑊𝑂𝑉
ℎ1

𝐹

𝑊𝑄𝐾
ℎ2 𝑇

𝐹
𝑊𝑂𝑉

ℎ1

𝐹

K-composition -
𝑊𝑄𝐾

ℎ2𝑊𝑂𝑉
ℎ1

𝐹

𝑊𝑄𝐾
ℎ2

𝐹
𝑊𝑂𝑉

ℎ1

𝐹



5. Two-Layer Transformers – 5) Composition

74

-> 𝑊𝑂𝑉 governs the subspace of the residual stream which the attention head reads in and write to

𝑊𝑂𝑉 = 𝑈Σ𝑉

Let’s decompose 𝑊𝑂𝑉 with SVD

Σ: only a subset of diagonal elements are non-zero

𝑉: which subspace of the residual stream being attended to 
project (align) information it really cares about 

𝑈: which subspace of the destination residual stream 
embed (align) a chosen set of directions in residual stream 



5. Two-Layer Transformers –5) Compositions
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K-composition -
𝑊𝑄𝐾

ℎ2𝑊𝑂𝑉
ℎ1

𝐹

𝑊𝑄𝐾
ℎ2

𝐹
𝑊𝑂𝑉

ℎ1

𝐹

Q-composition -
𝑊𝑄𝐾

ℎ2 𝑇𝑊𝑂𝑉
ℎ1

𝐹

𝑊𝑄𝐾
ℎ2 𝑇

𝐹
𝑊𝑂𝑉

ℎ1

𝐹



5. Two-Layer Transformers – 4) How Induction heads work
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5. Two-Layer Transformers – Term Importance Analysis
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Path Expansion of Logits



5. Two-Layer Transformers – Term Importance Analysis
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5. Two-Layer Transformers – Virtual Attention Heads
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What Are They?

• V-Composition

• Formed by multiplying OV matrices of two attention

• Creates a “virtual head” that behaves like with its own attention pattern 

Why Are They Interesting?

• Powerful Compositions

• Let models combine behaviors (e.g., attend to prior tokens, then further refine or shift focus). 

• Scalability

• Grow exponentially by composition 

• Small Functional Units

• Handle niche tasks without allocating a full, “large” head. 

Key Insight

• May be crucial in deeper models, where they offer more flexible and granular attention patterns.



Thank you!
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