
JongGeun Lee, Jungwoo Yang, Haesung Pyun

A Mathematical Framework
for Transformer Circuits

1

2025. 03.18

Content

1. Introduction

2. Transformer Overview

3. Zero-Layer Transformers

4. One-Layer Transformers

5. Two-Layer Transformers

2

1. Introduction

3

1. Introduction – Transformer Circuits Thread

4
- Antrophic, Transformer Circuits Thread

• A foundational article for understanding inner workings of transformer architecture.

- Antrophic, A Mathematical Framework for Transformer Circuits

https://transformer-circuits.pub/
https://transformer-circuits.pub/2021/framework/index.html

1. Introduction – What is Circuit?

5

• It seems complex at first glance, but knowing each part’s role makes it understandable.

1. Introduction – What is Circuit?

6

• This is an attempt to view the Transformer as a circuit and analyze how each component

affects the logits.

Transformer Transformer Circuit

1. Introduction – Model Simplifications

7

Toy Transformers

• At most two layers (0, 1, 2)

▪ More than two layers will be talked in Week 4 (In-context Learning and Induction Heads)

• Attention-Only (No MLPs)

▪ The authors emphasized the importance of the MLP layer, but excluded it due to difficulties in

interpretation.

• Get rid of layer normalization

• No biases

▪ The bias term was omitted, as it can be incorporated by extending the weight with an additional

dimension.

- Antrophic, In-context Learning and Induction Heads.

https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html

1. Introduction – Reverse Engineering Results

8

• Zero layer transformers model bigram statistics.

• One layer attention-only transformers are an ensemble of bigram and “skip-trigram”

(sequences of the form "A… B C") models.

• Two layer attention-only transformers can implement much more complex algorithms using

compositions of attention heads.

Reverse Engineering Results

1. Introduction – Reverse Engineering Results

9

• Since there is no interaction between tokens, the task becomes a bi-gram problem—predicting the

most appropriate next token based solely on the current one.

Zero Layer Transformer

• Zero layer transformers model bigram statistics.

1. Introduction – Reverse Engineering Results

10

One Layer Transformer

• One layer attention-only transformers are an ensemble of bigram and “skip-trigram”

(sequences of the form "A… B C") models.

Skip-trigram: [source]... [destination][out]

• A skip-trigram pattern refers to cases where a token (e.g., C) is predicted by attending

not only to the previous token (B) but also to a distant earlier token (A).

1. Introduction – Reverse Engineering Results

11

One Layer Transformer

• One layer attention-only transformers are an ensemble of bigram and “skip-trigram”

(sequences of the form "A… B C") models.

Skip-trigram: [source]... [destination][out]

• In natural language, long-range dependencies are common — a distant token (A) can influence later

tokens (B, C).

• A one-layer transformer can predict the next token (C) by:

▪ Referring to the immediately previous token (B → C), like a bigram model

▪ Referring to a distant but relevant token (A → C), similar to a skip-trigram pattern

1. Introduction – Reverse Engineering Results

12

Two Layer Transformer

• Two layer attention-only transformers can implement much more complex algorithms using

compositions of attention heads.

Induction Head Behavior

• Induction heads search for a previous occurrence of the current token, and if found, copy

the token that followed it.

1. Introduction – Reverse Engineering Results

13

Two Layer Transformer

• Two layer attention-only transformers can implement much more complex algorithms using

compositions of attention heads.

2. Transformer Overview

14

2. Transformer Overview – Residual Stream

15

• This figure represents author’s perspective on the Transformer architecture.

Transformer (Vaswani et al., 2017) Transformer (Elhage et al., 2021)

2. Transformer Overview – Residual Stream

16

• Both the attention and MLP layers each “read” their input from the residual stream.

• And, then “write” their result to the residual stream by adding a linear projection back in.

Transformer (Vaswani et al., 2017) Transformer (Elhage et al., 2021)

2. Transformer Overview – Residual Block

17

2. Transformer Overview – Virtual Weights

18

• is high-dimensional, (e.g., Llama 8B: 4096, 70B: 28,672) and can be divided into different subspaces.

• allows different components to move information efficiently by operating in distinct or shared

subspaces.

Residual stream:

2. Transformer Overview – Virtual Weights

19

2. Transformer Overview – Attention Heads are Independent and Additive

20- Jay Alammar, The Illustrated Transformer.

https://jalammar.github.io/illustrated-transformer/

21

2. Transformer Overview – Attention Heads are Independent and Additive

- Jay Alammar, The Illustrated Transformer.

https://jalammar.github.io/illustrated-transformer/

22

2. Transformer Overview – Attention Heads are Independent and Additive

• Specialized Attention Heads:

▪ Previous Token Heads

▪ Copying Heads

▪ Induction Heads

▪ …

• While the idea that attention heads are independent and additive may seem

unimportant at first, it provides a powerful lens:

• Transformer behavior emerges from the composition of specialized heads, each

performing distinct and meaningful roles.

2. Transformer Overview – Tensor Product

23

• Tensor Product multiplies per position or across positions.

• Understanding the tensor product is essential for analyzing how Transformers apply

attention across positions and dimensions.

2. Transformer Overview – Tensor Product

24

• A product like Id⊗WId⊗W (with identity on the left) represents multiplying each

position in our context by a matrix. (per position)

2. Transformer Overview – Tensor Product

25

• A product like Id⊗WId ((with identity on the right) represents multiplying across

positions.

2. Transformer Overview – Tensor Product

26

• A product like Id⊗WId ((with identity on the right) represents multiplying across

positions.

2. Transformer Overview – Tensor Product

27

• A product like Id⊗WId ((with identity on the right) represents multiplying across

positions.

2. Transformer Overview – Tensor Product

28

• Mixed-product property

• Attention Layer

3. Zero-Layer Transformers

29

3. Zero-Layer Transformers

Logits

unembed

embed

tokens

x0 = WEt

Logits = WUx0 • Model cannot move information from other token

• 𝑊𝑈𝑊𝐸 : Approximate bigram log-likelihood

• “Direct path”: token embedding flows directly down the

residual stream to the unembedding

• “Barack” is often followed by “Obama”

Bigram Model = 𝑝(𝑤𝑖|𝑤𝑖−1)

Logits = WUWEt

A B

𝑡

Logit

4. One-Layer Transformers

31

4. One-Layer Transformers – Overview

32

• Ensemble of a bigram model and several “skip-trigram” models

• Skip-trigram models: (“A…BC”)

• Attend from the present token(“B”) to a previous token (“A”) and copy

information to next tokens (“C”)

A CB⋯

Attend

Copy

4. One-Layer Transformers – One-Layer

33

4. One-Layer Transformers – The Path Expansion Trick

34

Zero-layer
Transformer

• Sum of end-to-end path

4. One-Layer Transformers – Query-Key and Output-Value Circuits

35

𝐴ℎ ⊗ (𝑊𝑈𝑊𝑂𝑉
ℎ 𝑊𝐸) where 𝐴ℎ = softmax(𝑡𝑇 ∙ 𝑊𝐸

𝑇𝑊𝑄𝐾
ℎ 𝑊𝐸 ∙ 𝑡)

Two [𝐧vocab, 𝐧vocab] matrices

▪ WE
TWQK

h WE (“Query-Key(QK) circuit”) : how much a

query token “wants” to attend to a key token

▪ WUWOV
h WE (“Output-Value(OV) circuit”) : how a given

token will affect the output logit if attended to

▪ “Frozen” attention pattern

▪ Logits are a linear function of the tokens

4. One-Layer Transformers – Skip-Trigrams

36

Skip-Trigram: [source]… [destination][out]

• Copying / primitive in-context learning

• Other interesting skip-trigrams

• Primarily positional attention heads

• Skip-trigram “Bugs”

4. One-Layer Transformers – Skip-Trigrams: Copying

37

• Dedicate an enormous fraction of their capacity to copying

• The OV circuit set things up so that tokens, if attended by the head,

increase the probability of that token and similiar tokens

A CB⋯

Attend

Copy

4. One-Layer Transformers – Skip-Trigrams: Copying

38

• Fixed source token

• Largest QK entries (destination)

• Largest OV entries (out)

LaTex

HTML

4. One-Layer Transformers – Skip-Trigrams: Primitive In-context learning

39

• Tokenizers typically merge spaces onto the start of words (“ Ralph”)

• Less common words

• common to map to a single token when a space is in front of them

(“ Ralph” -> [“ Ralph”])

• split when there isn’t a space (“Ralph” -> [“R”, “alph”])

• Can observe attention heads which handle copying for words that split into two tokens

without a space

• When observing a fragmented token, then attend back to complete tokens with a space and

then predict the continuation

• Kind of mimicking the induction heads ([A][B]…[A][B])

“ Ralph” “alph”“R”⋯

[ab] [b][a]

4. One-Layer Transformers – Skip-Trigrams: Primitive In-context learning

40

4. One-Layer Transformers – Skip-Trigrams: Primitive In-context learning

41

• More interesting and powerful algorithm in two-layer transformer

4. One-Layer Transformers – Other interesting skip-trigrams

42

4. One-Layer Transformers – Other interesting skip-trigrams

43

4. One-Layer Transformers – Other interesting skip-trigrams

44

4. One-Layer Transformers – Recap

45

Skip-Trigram: [source]… [destination][out]

Zero-layer transformer (Bigram log-likelihood)

One-layer transformer (Skip-Trigram)

• Copying / primitive in-context learning

• Other interesting skip-trigrams

• Primarily positional attention heads

• Skip-trigram “Bugs”

A CB⋯

Attend

Copy

4. One-Layer Transformers – Primarily positional attention heads

46

• Attends to the present token or the previous token

• WQK works like the rotational matrix

• Can select for any relative positional offset by rotating the dimensions

containig sinusoidal information

4. One-Layer Transformers – Skip-trigram “Bugs”

47

• Skip-trigram in a “factored form” split between the OV and QK matries

• Representing a function f a, b, c = f1 a, b f2(a, c)

• Can’t capture the three way interaction flexibly

• head increases the probability of both keep … in mind and keep … at bay

• must also increase the probability of keep … in bay and keep … at mind

• An early demontration of using interpretability to understand model failures

4. One-Layer Transformers – Skip-trigram “Bugs”

48

• Early demonstration of using interpretability to understand model failures

4. One-Layer Transformers – OV/QK Matrices

50

How do we automatically detect copying heads?

• OV and QK matrices are extremely low rank

• 50,000 x 50,000, but rank is 64 or 128

• Reveals hints of much simpler structure

• Like cluster structure

• Copying behavior is widespread

=> Eigendecomposition

Qualitative analysis -> Quantitative analysis

4. One-Layer Transformers – OV Matrices Eigendecomposition

51

𝑀𝑣𝑖 = 𝜆𝑖𝑣𝑖

𝑣𝑖 ≔ eigenvector 𝜆𝑖 ≔ eigenvalue

𝑀 = 𝑊𝑈𝑊𝑂𝑉
ℎ 𝑊𝐸

𝑣𝑖 = 𝑎1𝑡1 + 𝑎2𝑡2 +⋯+ 𝑎𝑛𝑡𝑛

• If λi is a postive real number, there’s a linear combination of tokens which increases the linear

combination of logits of those same tokens

• A set of tokens mutually increase their own probability

• Tokens with Plural words

• Tokens starting with a given first letter

• Eigenvectors have both positive and negative entries => there are two sets of tokens

• Increase probability in the same set

• Decrease probability in those other set
Copying requires 𝛌𝐢 to be positive

4. One-Layer Transformers – OV Matrices Eigendecomposition

52

4. One-Layer Transformers – OV Matrices Eigendecomposition

53

4. One-Layer Transformers – OV Matrices Eigendecomposition

54

• Author is not fully sure of eigenvalue-based summary statistic

• Positive eigenvalue -> might not mean copying matrix

• Map some token to decreasing the logits of that same token

• “Copying on average”

• Detecting “Copying Matrices” by other ways

• Diagonal of OV matrix: how each token affects its own probability

• Positive-leaning

• Tr M = σi=1
n aii = σi=1

n λi

𝑎11
⋱

𝑎𝑛𝑛

5. Two-Layer Transformers

55

Contents of Two-Layer Transformers

1) Recap One-layer Transformer

2) What happens with a Two-layer Transformer

3) Overview of Induction Head

56

4) How Induction heads work

5) Composition

6) Term Importance Analysis

7) Virtual Attention Head

5. Two-Layer Transformers – 1) Recap One-layer Transformers

57

Copying!

58

b

b a

-> Increase the probability of
the attended token and similar
tokens to a lesser extent

-> Attends the token that could
plausibly be the next token

5. Two-Layer Transformers – 1) Recap One-layer Transformers

5. Two-Layer Transformers – 2) What happens with a Two-layer Transformer

59

the attention patterns with attention weights scaled by 𝑣𝑠𝑟𝑐
ℎ

-> how big a vector is moved from each position?
-> See how useful it consider each source token

60

5. Two-Layer Transformers – 2) What happens with a Two-layer Transformer

5. Two-Layer Transformers – 3) Overview of Induction head

61

What is the difference between copying and induction?

• Copying

• Happens when tokens are plausible in terms of bigram-ish statistics

• Looking for places it might be able to repeat a token

• Induction

• Looks like an algorithm that doesn't depend on learned statistics about whether one token can

plausibly follow another

• Integrating the information about the context of the token by considering how the token was

previously used and looks out for simliar cases

5. Two-Layer Transformers – 3) Overview of Induction head

62

Induction head

search previous examples of A` in the context

if not find:

attend to the <START> token

if find:

look at the next token B in previous case

copy the B to predict the next token B`

BA⋯BA

Attend!

Copy!

64

5. Two-Layer Transformers – 4) How Induction heads work

5. Two-Layer Transformers – 4) How Induction heads work

65

b

b a

b
OV circuit
- Increase the probability of the attended
token and similar tokens in to a lesser
extent

QK circuit
- Attends the token that could plausibly

be the next token
-> Find the same matching and attend to
the next token of previous use case

66

5. Two-Layer Transformers – 4) How Induction heads work

67

Induction head

• As the depth increases, composition of attention heads appears

• Residual stream conveys sum of all the outputs of attention heads and the direct path

• Consequently, 𝑊𝑄, 𝑊𝐾 , 𝑊𝑉 of 2nd layer reads in a subspace of this composed residual stream

5. Two-Layer Transformers – 4) How Induction heads work

5. Two-Layer Transformers – 5) Compositions

68

Composition

• Q-Composition

• 𝑊𝑄 projects (reads in) a subspace affected by a previous head

• Use the context to figure out what the right source token is

• K-Composition

• 𝑊𝐾 projects (reads in) a subspace affected by a previous head

• Use the context and intelligence to figure out where to get the information from

• V-composition

• 𝑊𝑉 projects (reads in) a subspace affected by a previous head

• Figure out the information that is more meaningful than just the token at that position

5. Two-Layer Transformers – Revisit Read and Write

69

Keep in mind that all outputs are summed in the residual stream!

Write (Embed)
• Hidden dimension (small) -> residual dimension (big)
• The model chooses a set of directions in residual stream and write

the information to those

Read (Project)
• Residual dimension (big) -> hidden dimension (small)
• The model focuses on meaningful directions
• By aligning directions with 𝑊𝐼 , the model only reads in the

information it really cares about in the sea of information

70

5. Two-Layer Transformers – Revisit Read and Write

5. Two-Layer Transformers – 5) Compositions

71

Composition

• Q-Composition

• 𝑊𝑄 projects (reads in) a subspace affected by a previous head

• Use the context to figure out what the right source token is

• K-Composition

• 𝑊𝐾 projects (reads in) a subspace affected by a previous head

• Use the context and intelligence to figure out where to get the information from

• V-composition

• 𝑊𝑉 projects (reads in) a subspace affected by a previous head

• Figure out the information that is more meaningful than just the token at that position

5. Two-Layer Transformers – 5) Compositions

73

V-composition -
𝑊𝑂𝑉

ℎ2𝑊𝑂𝑉
ℎ1

𝐹

𝑊𝑂𝑉
ℎ2

𝐹
𝑊𝑂𝑉

ℎ1

𝐹

Q-composition -
𝑊𝑄𝐾

ℎ2 𝑇𝑊𝑂𝑉
ℎ1

𝐹

𝑊𝑄𝐾
ℎ2 𝑇

𝐹
𝑊𝑂𝑉

ℎ1

𝐹

K-composition -
𝑊𝑄𝐾

ℎ2𝑊𝑂𝑉
ℎ1

𝐹

𝑊𝑄𝐾
ℎ2

𝐹
𝑊𝑂𝑉

ℎ1

𝐹

5. Two-Layer Transformers – 5) Composition

74

-> 𝑊𝑂𝑉 governs the subspace of the residual stream which the attention head reads in and write to

𝑊𝑂𝑉 = 𝑈Σ𝑉

Let’s decompose 𝑊𝑂𝑉 with SVD

Σ: only a subset of diagonal elements are non-zero

𝑉: which subspace of the residual stream being attended to
project (align) information it really cares about

𝑈: which subspace of the destination residual stream
embed (align) a chosen set of directions in residual stream

5. Two-Layer Transformers –5) Compositions

75

K-composition -
𝑊𝑄𝐾

ℎ2𝑊𝑂𝑉
ℎ1

𝐹

𝑊𝑄𝐾
ℎ2

𝐹
𝑊𝑂𝑉

ℎ1

𝐹

Q-composition -
𝑊𝑄𝐾

ℎ2 𝑇𝑊𝑂𝑉
ℎ1

𝐹

𝑊𝑄𝐾
ℎ2 𝑇

𝐹
𝑊𝑂𝑉

ℎ1

𝐹

5. Two-Layer Transformers – 4) How Induction heads work

76

5. Two-Layer Transformers – Term Importance Analysis

77

Path Expansion of Logits

5. Two-Layer Transformers – Term Importance Analysis

78

5. Two-Layer Transformers – Virtual Attention Heads

79

What Are They?

• V-Composition

• Formed by multiplying OV matrices of two attention

• Creates a “virtual head” that behaves like with its own attention pattern

Why Are They Interesting?

• Powerful Compositions

• Let models combine behaviors (e.g., attend to prior tokens, then further refine or shift focus).

• Scalability

• Grow exponentially by composition

• Small Functional Units

• Handle niche tasks without allocating a full, “large” head.

Key Insight

• May be crucial in deeper models, where they offer more flexible and granular attention patterns.

Thank you!

80

	슬라이드 1
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18
	슬라이드 19
	슬라이드 20
	슬라이드 21
	슬라이드 22
	슬라이드 23
	슬라이드 24
	슬라이드 25
	슬라이드 26
	슬라이드 27
	슬라이드 28
	슬라이드 29
	슬라이드 30
	슬라이드 31
	슬라이드 32
	슬라이드 33
	슬라이드 34
	슬라이드 35
	슬라이드 36
	슬라이드 37
	슬라이드 38
	슬라이드 39
	슬라이드 40
	슬라이드 41
	슬라이드 42
	슬라이드 43
	슬라이드 44
	슬라이드 45
	슬라이드 46
	슬라이드 47
	슬라이드 48
	슬라이드 50
	슬라이드 51
	슬라이드 52
	슬라이드 53
	슬라이드 54
	슬라이드 55
	슬라이드 56
	슬라이드 57
	슬라이드 58
	슬라이드 59
	슬라이드 60
	슬라이드 61
	슬라이드 62
	슬라이드 64
	슬라이드 65
	슬라이드 66
	슬라이드 67
	슬라이드 68
	슬라이드 69
	슬라이드 70
	슬라이드 71
	슬라이드 73
	슬라이드 74
	슬라이드 75
	슬라이드 76
	슬라이드 77
	슬라이드 78
	슬라이드 79
	슬라이드 80

